

The NuMI Project CD-4 Review

prepared by the NuMI Project Team

Outline

- Project Overview
- Presentation of CD-4 Commissioning Goals
- Plan for Transition to Operations

Project Overview

Gina Rameika

The MINOS Experiment

A 2-detector long-baseline neutrino oscillation experiment in a beam from Fermilab's Main Injector

1st MINOS Collaboration Meeting : August 1994

MINOS Proposal Submitted: April 1995

Stage 1 Approval : June 1995

R&D & Conceptual Design Funds: FY97-98

Equipment Funds: FY99-05

The NuMI Project

- 1.0 The NuMI Facility
 - 1.1 Technical Components
 - 1.2 Civil Construction
 - 1.3 Project Management
- 2.0 The MINOS Detectors
 - 2.1 Steel and Coils
 - 2.2 Scintillator Systems
 - 2.3 Electronics, Trigger and DAQ
 - 2.4 Far Detector Installation
 - 2.5 Near Detector Installation
 - 2.6 Project Management
- 3.0 Other Project costs
 - 3.1 Detector R&D
 - 3.2 Conceptual Design
 - 3.3 Cavern Construction
 - 3.4 Project Support

- CD-1 Approval of Mission Need
 - 3/17/1997
- CD-3a Start Limited Construction
 - 2/23/1999
- CD-2 Approve Baselines
 - 2/12/1999
- CD-3b Continue Construction
 - 5/21/1999
- CD-4 Start Operations
 - **3/2005**

CD-1 → CD-4 : 8 years \$171M authorized TPC

WBS 1.1 Technical Components

- 120 GeV protons, 4e13 ppp, 1.8 sec cycle time, matched to MI emittance
- 1 interaction length graphite target
- Two focusing horns operated at 200 kAmp
- 7 kton steel shielding in target hall
- 2 meter diameter decay pipe, operated at < 1 Torr
- 9x9 10 cm-Pixel hadron monitor
- 1 kiloton hadron absorber with aluminum core
- 3 muon monitor stations

WBS 1.1.1 Primary Beam

MI-NuMI Stub transport

Pre-Target area

WBS 1.1.2 Neutrino Beam Devices

NuMI target assembly (upper) Graphite target (lower)

DS end of Horn 1 in Target Chase

WBS 1.1.3 Power Supply System

Power Supply Room

Horn stripline

WBS 1.1.4 Decay Pipe and Hadron

Absorber

Decay Pipe Installation

DS Decay pipe window and completed absorber

WBS 1.1.5 Neutrino Beam Monitoring

UTA Muon Monitor

WBS 1.1.6 Alignment Systems

WBS 1.1.7 Water, Vacuum & Gas Systems

RAW (RadioActive Water) skids in the RAW room next to the Target hall

WBS 1.2 Facility Construction

Scope

- A 66 meter long lined carrier tunnel starting at the MI-NuMI stub
- A 58 meter long unlined carrier tunnel
- Pre-target/Target enclosure
- MI-65 and MINOS Service Buildings and shafts
- A 675 meter Decay Tunnel
- Hadron Absorber Hall, Access Tunnel with Muon Alcoves
- Near Experimental Hall, 30 meters long

WBS 1.2 Civil Construction

Two Service Buildings

MI-65

MINOS Service Building

WBS 2.0 The MINOS Detectors

- Far Detector (Soudan Underground Lab)
 - 8m Octagonal Tracking Calorimeter
 - 2 sections, 15m each
 - 486 planes of steel & scintillator
 - 95,000 scintillator strips 23K channels
 - 2 sided readout
 - 8 fold multiplexing
 - 5.4 kT total mass

Near Detector (MINOS Hall - FNAL)

- 3.8 x 4.8m "octagonal" steel & scintillator tracking calorimeter
- Same basic construction, sampling & response as the far detector
- 282 planes of steel
- 153 planes of scintillator 9200 channels
 - 120 fully instrumented calorimeter
 - 33 4-fold multiplexed spectrometer

980 ton total mass

WBS 3.3 Soudan Cavern Construction

Begin Cavern Construction:

October 1999

WBS 2.4 MINOS Far Detector Installation

Building a ship in a bottle

Installation begins July 2001

Construction completes July 2003

Two magnetized Super-modules operate routinely collecting Atmospheric Neutrino Physics Data

WBS 2.5 Near Detector Installation

First plane (281) installed March 31, 2004

Installed 5 spectrometer planes per day;

Each day ending with an instrumented plane which was commissioned in the evening by collaborators

Installed 3 calorimeter planes per day;

Well choreographed team of plane installers and cablers 3 planes commissioned evening

Last plane (0) installed August 11, 2004

Commissioning Run January 21-23, 2005

Bruce Baller

CD-4 Commissioning Goals

	Parameter	Measurement	Commissioning Goal
	Proton intensity in target	Toroid (or equivalent) beam	Greater than 1×10^{12} 120
1	hall	intensity monitor at	GeV protons per spill
-		entrance to the target hall	
	Beam alignment	Transverse distributions of	Proton direction established
2		the proton beam and	to within 1 mr of the known
_		secondary beams	direction to the far detector
			in the Soudan mine
3	Neutrino beam energy	Near Detector event energy	low energy, 2-4 GeV
	Cosmic ray muons detected	Near Detector data read out	Majority of the 153 Near
4	in the MINOS Near	through DAQ system	Detector planes sensitive to
-	Detector		muons
	Near Detector neutrino flux	Charged-current event rate	Observe neutrinos produced
5		in 1.5 ton fiducial region	in the Near Detector by the
			NuMI beam
	Cosmic ray muons and	Far Detector data read out	Majority of the 484 planes
6	atmospheric neutrinos	through DAQ system	of the Far Detector sensitive
	detected in each of the two		to muons and atmospheric
	MINOS Far Detector		neutrinos
	Supermodules		

Cosmic Rays and Atmospheric Neutrinos in the Far Detector

Goal 6 achieved

Cosmic Rays in the Near Detector

Goal 4 achieved

Proton Intensity > 1e12 ppp

February 17, 2005

26

Goal 2 Achievement

Goal 2 : Beam angle to Soudan = Beam centered on Profile Monitors and Hadron Monitor

Beam Profile Monitors

Hadron Monitor Beam Profiles

NuMI Hadron Monitor X-position

Goal 2 Achieved:
Beam centered
on Hadron
Monitor in
Absorber Cavern

NuMI Hadron Monitor Y-position

First Neutrinos in the Near Detector

Near Detector Event "slicing"

Neutrinos from the beam

Rock muons & neutrinos
Contained neutrinos
cosmics

Charged Current Muon Energy

Goal 3 achieved Goal 5 achieved

Transition to Operations

Greg Bock

NuMI Facility Transition to Operations

- Final Acceptance of facility from SBO subcontractor on 10-13-04
 - FESS accepted responsibility for plant equipment maintenance
 - NuMI Project accepted ownership of facility
- Transition from Project to Division Ownership
 - AD & PPD Building Managers worked with Project Floor Managers to understand facility and equipment
 - Operational access procedures and training developed by AD,PPD, & ESH Section
 - Response to alarms and notifications changing from Project personnel to responsible lab personnel

NuMI Beamline Transition to Operations

- Beam Operation (procedures, applications, control, maintenance) is equivalent to existing beams (e.g. MiniBooNE)
 - Use exisiting operations and support staff
 - Operations staff trained in NuMI specifics (e.g. Search and Secure)
 - Beam monitoring training on-going
 - Use standard FNAL beam components except UT-Austin profile monitors
 - Maintenance MOU for profile monitor in review
- Target Hall operation and maintenance procedures similar to MiniBooNE experience
 - Use existing MSD Target Hall Support staff with MiniBooNE experience
 - Staff also responsible for MiniBooNE
 - NuMI specific procedures in place

MINOS Experiment Transition to Operations

- Soudan Laboratory
 - Minecrew + visiting physicists underground Monday-Friday 7:30 am 5:30 pm
 - Surface Building for evenings and weekends (CDMS)
 - Shift leaders' house for evenings and weekends (MINOS)
 - 24/7 on-call for access (driven by CDMS need)
- Fermilab
 - Wilson Hall 12th floor control room (no control room at Exp Hall)
 - Monitors and controls both Near and Far Detectors
 - 24/7 shifts when beam is operating
- Remote Operation
 - DAQ, trigger, light injection controllable from UK
- MOU between Experiment and Fermilab
 - Defines roles and responsibilities of Fermilab organizations and the collaborating institutions with equipment maintenance responsibilities

Cost Summary - TEC

		Total	Actual Cost	Total
WBS / Description		Estimated	of Work	Obligated
		Cost	Performed	incl RIP's
1.1	Technical Components	\$29,977	\$30,192	\$30,507
III III	Extraction & Primary Beam	5,986	5,960	6,050
1.1.2	Neutrino Beam Devices	11,799	11,780	11,930
1.1.3	Power Supply System	5,480	5,486	5,495
1.1.4	Hadron Decay and Absorber	1,584	1,583	1,593
1.1.5	Neutrino Beam Monitoring	481	486	487
1.1.6	Alignment Systems	251	205	238
1.1.7	Water, Vacuum & Gas Systems	2,182	2,210	2,210
1.1.8	Installation and Integratation	2,153	2,419	2,440
1.1.9	Hadronic Hose (Close-out)	62	63	63
1.2	Facility Construction	\$74,652	\$74,586	\$74,586
1.3	Project Management	\$3,181	\$3,129	\$3,132
	Contingency	\$1,358		
1	Total Estimated Cost	\$109,168	\$107,907	\$108,225

TEC - Obligation = \$943K

Cost Summary - OPC

		Total	Actual Cost	Total
	WBS / Description	Estimated	of Work	Obligated
		Cost	Performed	incl RIP's
2	MINOS Detector	\$47,988	\$48,138	\$48,216
2.1	Magnets: Steel & Coils	7,621	7,595	7,595
2.2	Scintillator Detector Fabrication	19,525	19,517	19,517
2.3	Electronics, DAQ & Database	9,173	9,134	9,165
2.4	Far Detector Installation	4,581	4,577	4,577
2.5	Near Detector Installation	5,361	5,529	5,576
2.6	MINOS Project Management	1,727	1,787	1,787
3	Project Support	\$19,906	\$19,900	\$19,900
3.1	NuMI Conceptual Design	1,934	1,928	1,928
3.2	MINOS Detector R&D	1,768	1,768	1,768
3.3	MINOS Cavern	14,527	14,527	14,527
3.4	Soudan/MINOS Operating	1,677	1,677	1,677
	Contingency	\$2,899		
	Total NuMI Other Project Co	\$70,793	\$68,038	\$68,116
	UK In-Kind Contribution	(\$4,835)		(\$4,835)
	Minnesota Preconstruction Fund	(758)	(758)	(758)
	Minnesota Construction Funds 1	(3,000)	(3,000)	(3,000)
	Total US Funds	\$62,200	\$59,445	\$59,523
	Total OS Fullus	\$62,200	\$39,443	\$39,323
	Total Project Cost	\$171,368	\$167,352	\$167,748

OPC - Obligations = \$2677

Schedule Summary

The Plunkett Plot

All future projects should do this from the beginning; NuMI had a total of 343; last 69 plotted here

Conclusion

- We have designed and built and will operate a safe facility
- We have a single routine punch list item (hookup of a chiller underground)
- We met our commissioning goals
- The labs operating divisions and sections are staffed for and knowledgeable about the NuMI facilities and beam
- The MINOS detector is operated by the MINOS Collaboration; an MOU between the collaboration and Fermilab organizations is underdevelopment
- The University of Minnesota smoothly runs the Soudan Laboratory under an MOU with Fermilab
- Final project closeout will occur in the summer, including financial closeouts and procedural documentation

We believe we are ready to begin operations!

